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Abstract. On the basis of Tu’s work, we establish a more general skeleton on K symmetries 
and T symmetries of evolution equations and their Lie algebraic structures and discuss 
carefull) the corresponding symmetries and Lie algebras for K d v  and Jaulent-Miodek 
hierarchies. 

1. Introduction 

It is known (Chen et al 1982a, Li and Zhu 1987, 1986) that many integrable evolution 
equations possess a new set of symmetries, usually called T symmetries, and these 
symmetries often constitute a Lie algebra together with the original symmetries, called 
K symmetries (for more information, see Chen et al 1982b, 1983, Zhu and Li 1987, 
1986, Tian 1988, Li and Hu 1988). Furthermore, T symmetries themselves are full of 
deep significance (Olver 1980, Chen et al 1987). Li and Cheng (Li and  Cheng 1989, 
Cheng and  Li 1987) found that there also exist new sets of symmetries for the evolution 
equations which take T symmetries as vector fields. Recently Tu (1988) showed that 
these T symmetries may be generated by the generators of the first degree (Fuchssteiner 
1983). In this paper, we consider more general cases based upon Tu’s hark and give 
more infinite-dimensional Lie algebraic structures on K and T symmetries. We explain 
that not all T symmetries can form one Lie algebra with all K symmetries and discuss 
carefully two hierarchies of integrable evolution equations ( K d v  and  Jaulent-Miodek 
hierarchies) as examples. In addition, we point out a few careless mistakes in the 
literature. 

In the following, we give some basic notation, definitions and results. In  accordance 
with Tu (1988), let [w and C be the real and  complex fields respectively, and let Y be 
one linear topological space over C. We denote by 2 all differentiable functions 
mapping R ”  x R x Y into Y. 

Dejnifion 1. Let K = K ( U )  = K (x, t ,  U ) ,  S = S (  U )  = S(x, 1, U )  E 2. The Gateaux deriva- 
tive of K (  U )  in the direction S (  U )  with respect to U is defined by 

a 
K ’ [ S ]  = K ‘ (  u ) [ S ( U ) ] = -  K (  U + E S ( U ) ) I , , ~  

d E  

It is known that 2 forms a Lie algebra with respect to the following product: 

[ K ,  S ]  = [ K ( u ) ,  S ( u ) ] = K ’ ( u ) [ s ( u ) ] - S ’ ( u ) [ K ( u ) 1  K , S E Y .  (1.2) 
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Assume that U = u ( x ,  t )  is a differentiable function mapping R v  x R into Y. We consider 
some evolution equation 

U, = K ( x ,  t, U )  K E 3. (1.3) 

Definition 2. A function G = G ( x ,  t, U )  E 2’ is called a symmetry of the equation (1.3) 
if G satisfies the linearised equation of (1.3) 

K ’ ( u ) [ G ]  
d t  

where d /d t  denotes the total t-derivative, U satisfies the equation (1.3) and K’(  U)[ GI 
is defined as in (1.1). 

Evidently, the linearised equation (1.4) is equivalent to the following equation 
(Fuchssteiner 1983): 

aG 
-= [ K ,  GI 
at  (1.5) 

where [ K ,  GI is defined as in (1.2). The symmetries defined in definition 2 are all 
infinitesimal generators of one-parameter groups of invariant transformations of 
equation (1.3). 

Denote by t(2’) the linear operators mapping 2 into itself. Furthermore, denote 
by OU the set of differentiable operators mapping R ”  x E2 x Y into L ( Y )  and suppose 
that (PK = @( x, t ,  U )  K for (P E OU, K E 2, (x, t ) E R x R, U E 9 

Definition 3. Let @ E %, K E 3, then the Lie derivative (Magri 1980) LK(P E UU of @ 
with respect to K is defined by 

(LK @ ) S  = @[ K ,  SI - [ K ,  @SI (1.6) s E 2. 

Definition 4. An operator (P E 3 is called a hereditary symmetry (Fuchssteiner 1979, 
1981) if the following holds: 

a’[ K,  S ] + [ ( P K ,  @SI -a{[ K,  (PSI + [(PK, S I }  = 0 K , S € 2 ’ .  (1.7) 

An operator (P E % is called a strong symmetry (or a recursion operator) of (1.3) if it 
maps one symmetry of (1.3) into another symmetry of (1.3). 

It is easy to see that @ E  % is a hereditary symmetry if and only if 

L @ K  (P = ( P t K  (P K E 2  (1.8) 
and that @ =(P(x, t, U )  E OU is a strong symmetry of (1.3) if and only if 

a@ -+ L K @  = 0. 
at  

In addition, if we define 

a 
a& (P‘ [K]S=- (P(u+&K)SI ,=O S € 2 ’  

then it is easily proved that 

LK (P = a’[ K ]  - [ K’ ,  ( P I  = @’[ K ]  - K’O + (P K ’  (1.10) 
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and that (1.7) is equivalent to (Fuchssteiner and Fokas 1981) 

@ ' [ @ K ] S  - @ ' [ @ S ] K  - @ { @ I [  K ] S  - @'[ S ] K }  = 0 K ,  S E 2. (1.11) 

The strong symmetries and hereditary symmetries play a crucial role when generating 
K symmetries and T symmetries of evolution equations in our theoretical skeleton. 

2. Some fundamental lemmas 

In  this section we shall present several basic lemmas which are important for finding 
Lie algebraic structure of K symmetries and T symmetries for evolution equations. 

Let @ E  a. We accept O W '  = 0, and suppose that @ satisfies that @{f( t ) K }  = 
f ( t ) @ K  for K E 2 and an arbitrary differentiable time function f: R -+ C and that a, 
p, y, 6 are all polynomials of @ with time-function coefficients, for example a = a ( @ )  = 
I: a,@' =I: a , (  I ) @ ' .  

Lemma 1. Let @ E  "U be a hereditary symmetry and L K @  = (Y = a ( @ )  for some K E 2. 

ProoJ: When n = 0, Ls@" = LsZ = 0,  for S E 9. Thus (2.1) holds for n = 0. 
In  the following, we let n 3 1. By (1.8) 

L@,,lK@ = @"ILK @ = a am m 2 0 .  

When n > 1, by the chain rule for derivatives of operators and (2.2) we have 

( @ . " ) ' [ W ' K ]  = @*-'@'[@"K]@'- l  
, = I  

I 

= @*-'(L,I t , ,@+[(~."K) ' ,  @ I ) @ ' - '  
1 = I  

= n a @ ) m T ' l - l + [ ( @ m K ) ' ,  @."I m S 0 .  

Thus 

Lo,,,K@)" = n(y@m+n-' m s O , n 2 1  

which completes the proof. 0 

From this lemma, we can obtain the two following corollaries at once. 

Corollary 1. Let @ E 9 be hereditary. Then if LK @ = 0 for some K E 3, we have 

[@,"K, @*SI = Q f l [ a m K ,  S ]  SE 2, m, n 2 0 .  (2.3) 

In particular, 

[@."K, @,"K]  = 0 m, n z 0 .  

Corollary 2. Let @ E  OU be hereditary. I f  @ = @(x, U )  is a strong symmetry of (1.3), 
then the a", n 5 0, are all strong symmetries of the equation U, = @'K(I  L 0). 
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Lemma 2. 
Ls@ = p = p(@) .  Then 

[QmtAK, @"+'SI 

Let @ E  "11 be a hereditary symmetry, K, S E  2, and L k @  = a =a(@), 

= Q m T " { [ a k K ,  @'S]+(mp@' ' "K  - na@'""S)} m, n, k, 1s 0. 
(2.4) 

Proof. By ( 1.6), for m, n, k, I z 0, we have 
[@"'+'K, @"+'SI = -(  L ~ , , . - " K @ f ' ) @ ' S + @ r ' [ @ r " ' ~ K ,  @'SI 

[@"'t'K, @'SI = ( L a  s@"' )@AK +@"'[@'K, @'SI.  

The desired result follows these by lemma 1. 

It is easy to deduce the following. 

Corollary 3. Let @ E  3 be hereditary, K E 27, and Lk @ = cy, then 

[@'"K, @ " K ]  = a ( m  - n)Qn"" ' K  m, n 2 0 .  (2.5) 

In addition to the assumptions of corollary 3, let a = O  and d @ / a t  =0,  a K / a i  =0, 
i.e. @ =@(x,  U ) ,  K = K ( x ,  U), this moment @ is a strong symmetry of (1.3) by (1.9). 
Then the evolution equations U ,  = @'K,  13 0, possess a hierarchy of common symmetries 
{@"K}",,o which commute with each other. For many hierarchies of soliton equations, 
this is usually verified by using the Hamiltonian structures of the hierarchies. But, 
here we see that that point can also be deduced directly from the strong and  hereditary 
properties. 

Lemma 3. Let @ E 3 be a hereditary symmetry, K ,  S E  2, and 1 be a non-negative 
integer. I f  L K  @ = cy = a ( @ ) ,  Ls@ = p = p ( @ )  and @'[ K ,  SI = yK + 6 s  = y ( @ )  K + 
ti(@)& then {@"'+'K, @"+'Slm, n 2 0) constitute an infinite-dimensional Lie algebra 
and  possess the following commutator relations: 

K (2.6) [@pn+lK, @."+IK] = c y ( m  - n ) @ m + n ~ ? / - l  

[Qm+'K,  Qn+'S] 

K - - y@"l*f l f /K + S@!7l'fl'/S+ ( m  + / ) p @ ! 7 > - , ! + 2 / - 1  

S (2.7) 

S (2.8) 

- ( n  + ~ ) a @ m - n * 2 1 - l  

[@~Z+'S, Q ~ + / s ]  = p ( m  - n ) @ m + n + 2 / - l  

where m, n 3 0. 

Proof. The relations (2.61, (2 .8)  are easily deduced from corollary 3. By (2.4), for 
m, n 3 0 we have 

[@"+'K, @,"+'SI 

= [ K ,  S]+(m+l)P@"""'" 'K - ( n + l ) a @ m + " + 2 ' - 1  S 

S + ( m +  I ) p @ m + n + 2 1 - l  K - ( n  + 

{@"'K, @'+IS/m, n 3 0) form an infinite-dimensional Lie algebra. 

S. - - y @ m ~ n + / ~  + ~ @ m + n - /  

Thus the relation (2.7) also holds for m, n 3 0 .  It follows from (2.6)-(2.8) that 
0 
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Lemma 4. Let @E % be a hereditary symmetry, K ,  S E  2, and 1 be a non-nega- 
tive integer. If L K @  = 0, L s @  = p = p ( @ )  and @ ' [ K ,  S] = y K  = y ( @ ) K ,  then 
{ @ " K ,  @"+'Slm, n z 0 }  constitute an infinite-dimensional Lie algebra and possess the 
following commutator relations: 

[@"'K, @ " K ]  = 0 (2.9) 
[QnIK, @ ~ i - ~ s ]  = y @ m - ~ j ~  + m p @ n t ~ t i * /  ' K  (2.10) 

[@,,AS) = P ( m  - n ) @ " ' * " + 2 '  ' S  (2.11) 

where m, n * 0. 

The proof, which is similar to the proof of lemma 3, is omitted. 
In order to derive 7 symmetries of evolution equations, we shall make use of one 

result of Fuchssteiner's. 

Lemma 5 (Fuchssteiner 19833). Let K = K ( x ,  U ) ,  S-S(x, 1 4 1 ~ 2 .  I f  [ K , [ K , S ] ] = O ,  
then T =  t [ K , S ] + S  is a symmetry of (1 .3) .  

This lemma shows that if  S = S(.U, U 1 E 3 is the first-degree generator of the equation 
U, = K (x, U), then we obtain a first-degree time-dependent symmetry r = t [  K ,  SI + S 
of the same equation. 

3. K symmetries, T symmetries and their Lie algebras 

In  this section, we shall give a sufficient condition under which a given evolution 
equation possesses K symmetries and T symmetries, and establish the Lie algebraic 
structures of the K symmetries and 7 symmetries for the equation. 

Theorem 1.  Let @=@(.U, U )  E .U be a hereditary symmetry, K = K ( x ,  U), S = S(x, U )  E 

2, and let I ,  p be two non-negative integers. Suppose that L K  @ = 0 ,  L s @  = p = p ( @ ) ,  
and @'[ K ,  S] = yK = y ( @ )  K,  then the evolution equation 

(3.1) 

possesses two hierarchies of symmetries { K,,, = @ " r K } ; L o  and {i-: = @ " T " } ~  n = O r  where 
7" is defined by 

U, = K,  = @'K 

7" = t [  K,, @' 'SI + @'-"S = t (  y K  + p P @ '  ' K )  + @'"'S 
7" = t [  K,, SI + S = t (  y@'-'K + P P @ ~ - ]  K 1 + S 

for p < l  
for p b 1. (3.2) 

Proof: By using lemma 2, we have 

[@"'K, @ " K ]  = 0 m,n*O (3.3) 
[@"K, @"SI = y@"'+"-'K + mp@"'+*- ' K (3.4) 

[@,"'S, @"SI = P ( m  - n)@'"- ' ' - 'S m, n z 0 .  (3.5) 

m, n 2 0,  m + n 3 I 

Noticing dK,,/dt=O, m 2 0 ,  it follows from (3.3) that { K m } Z e o  is a hierarchy of 
symmetries of (3.1). Based on (3.3), (3.41, we can obtain that 

[K, ,  [ K,, @'"'S]] = 0 

[K, ,  [K, ,  SI1 = 0 

for p < 1 

for p 3 1. 
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Hence by lemma 5 ,  r p  is a symmetry of (3.1). In addition, from corollary 2, we know 
that the a", n 3 0, are all strong symmetries of (3.1). Therefore the 71: = OnrP, n 3 0, 
are all symmetries of (3.1). The formula (3.2) is a direct corollary of (3.3), 
(3.4). cl 
Remark 1 .  We require that a @ / a t  = 0, a K / a t  = 0 in the theorem. If  we do  not have 
this condition, then the Q m K ,  m s O ,  are not certain to be symmetries of (3.1). 

Remark 2. By lemma 1 and corollary 1, we easily obtain the following: 

L*,'S@ = p@," @!'[K, @"SI = -y@" ' I ' - 'K n, k > O , n + k S l .  

Thus the @"S, n 3 1, all possess the property which S satisfies. But we should not 
obtain other new symmetries of (3.1) beginning with @"S(n  3 1). 

Corollary 4.  Let the assumption be the same as that of theorem 1. When p < 1, equation 
(3.1) possesses symmetries { [ Q ' K ,  (P'SIIOG i + j s  1 -  1 , j s  1 - p } ;  when p a  1, equation 
(3.1) possesses symmetries { [ O ' K ,  @'S]IOs i + j S  1 -  1). 

Proof: W h e n p < l ,  for i , j ~ O s a t i s f y i n g j ~ l - p , O ~ i + j ~ l - l  

[Q'K,  4 ' S ]  = 4J-"p[O'K, = OJ- 'TP[4 'K ,  rg]. 

W h e n p z l ,  for i , j ~ O s a t i s f y i n g O ~ i + j S / - l  

[@'K,  WS] = @'[@'K, SI = (D'[@'K, rg]. 

By also noting corollary 2 and theorem 1, we obtain the desired results. 0 

Theorem 2. Under the assumption of theorem 1, set 

Then two hierarchies of symmetries {K,}",=,, and {T,,}:=~ constitute an infinite- 
dimensional Lie subalgebra of 3 and possess the following commutator relations: 

[Km,  Kn1=0 (3.7) 

[ K m ,  r n 1 =  yKm+n +mPKm+n-/-l K - ,  = O  (3.8) 

[ r m ,  r n 1  =P(m-n)rm+n+/ - I  7-1 = 0 (3.9) 
where m, n 3 0. 

Proof: Relation (3.7) is just (3.3), which has been verified. Now we prove relation 
(3.8). When p < I ,  we have, by using (3.3), (3.4), 

[K,, T,,] = [@"K, t[W'K,  @""S]+@""S] 

= [@."K, @"+'SI = yK,+, + m p K , + , + , - l  for m, n 2 0. 

When p 3 1, similarly we have 

[K,, r , , ]=[@"K, t [QPK,  @""S]+@""S] 

= [@."K, @"+'SI = yK, , ,  + m p K m + , , I - l  
Thus the relation (3.8) holds for m, n 2 0. Next we shall prove relation (3.9). Let p < 1. 
Notice that we have (3.3)-(3.5) and @ { f ( t ) K }  = f ( t ) @ K  f o r f : R + @ .  

for m, n 3 0. 

[r,, r n ]  =[t(y@""K +p/30mtp+'-' K )  +@"'+'S, t (  Y @ " ' ~ K  +ppOnrp+'- '  K ) + @"+IS] 
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= P ( m  - n ) ~ m + , , - / - I  for m, n 2 0. 

When p 2 1, the proof is completely similar. Thus (3.9) holds also for m, n 2 0. This 
completes the proof. 0 

Especially when 1 = 0, 1 or  p = 0, we obtain the following two results from theorems 
1 and 2.  

Corollary 5. 
suppose that LK @ = 0, LsQ, = p. 

Let Q, = @(x, U )  E ;U be hereditary, K = K ( x ,  U ) ,  S = S(x, U )  E 2 and 

( i )  When [ K ,  SI = y K ,  equation (3 .1 )  possesses symmetries 

K ,  = Q m K  m 2 O  

T{ = t ( y ~ " ' P ~ ~ p ~ @ ' ' t P ~ l ~ ) + @ n ~  n 2 0 .  

Furthermore, {K,,,};-() and { T ,  = T{}:=,, constitute a Lie subalgebra of 2 and satisfy 

[ K m ,  Kn1=0 m , n z O  

[ K m ,  ~ n l =  YKm-n + m P K m t n  i m,n>O 

[ T m ,  7 n 1 =  P ( m  - n)Tm+n-, m, n 2 0 .  

(ii) When Q,[K, SI = y K ,  equation ( 3 . 1 )  possesses symmetries 

K ,  = OmK m z O  

rf: = 
t y@"K +@'"+IS p = O , n z O  [ t ( y + p p ) @ n ' P - ' K  + @ " S  p 3 1 , n z O .  

Furthermore, setting 

t-y@"K +@"+IS p = 0 ,  n a 0  
t (  y + p P ) @ " + P K  +@,"'IS p 2 1 , n a O  T n = {  

{K,}X,=o and {T,,}:=~ constitute a Lie subalgebra of 3 and satisfy 

[ K m ,  Kn1=0 m, n z O  

[ K ,  T ~ I =  ( r + m P ) K m t n  m , n s O  

[rmm, T n ] = P ( m - n ) 7 , + ,  m, n 5 0. 
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Corollary 6. Let Q, = @(.q U )  E .U be hereditary, K = K ( x .  U), S = S(w, U )  E Y and 
suppose that Lk CP = 0, L5CP = p, @ I [  K ,  SI = yK.  Then the equation U, = K (x, U )  
possesses symmetries 

K,, = @'"K m a 0  

7:: = tyCP"K + @""S n 3 O  

which constitute a Lie subalgebra of 6p and satisfy 

[K,,,. K,1=0 m , n a O  

[K, ,  7zI = yK,,-, + mpK,,.,,/ I 

[T:,;, rOnI = p ( m  - n ) T ' L p l f l  I 

m, n 2 0 

rn, n 3 0. 

If we set T,, ;= T:, n 2-0, then {Kn,}il (, and {T,,}::" form a Lie algebra by the above 
two corollaries when p = 0 or 1 = 0, but in general, do not form a Lie algebra when 
p > 0 and 1 > 0. When I =I 1 and p = 1, the result ( i i )  of corollary 5 corresponds to the 
main result (theorem 1)  of Tu (1988) and  shows that { K n ,  = @."K}:,-, and { T ,  = T ! , ~ ~  = 
@ n t l ~ l l } : - O  form a Lie algebra with respect to the Lie product (1.2). But, since 
[ K ,  T A ]  = [ K ,  SI is not generally a linear combination of the K,, m 2 0, and the T,,, n 2 0, 
{ K ,  = OmK};=( ,  and { T ,  = T : - ,  = C P " " T " } ~ -  are not certain to constitute a Lie 
algebra. In theorem 1 of Tu (1988), the description of this is not completelq correct. 

4. Applications to integrable evolution equations 

The theoretical skeleton proposed in the last section may be applied to a large number 
of hierarchies of integrable evolution equations. In the following, we shall discuss 
only two hierarchies of integrable evolution equations ( K d v  and  Jaulent-Miodek 
hierarchies) as examples. 

4.1. The K ~ V  hierarchy 

Let us first consider K d V  hierarchy 

d 
dx 

U, = K ,  = @,U, X, f E iw p 3 0 CP=D2+4u+2u ,D I E)=-. (4 .1)  

Choosing K = U,, S = 1, we have 

L K @ = o  

Note 1 = 1 in this case. We obtain by lemma 2 that 

L*@ = 2 @[ K,  $1 = [ K,  @(+)I = [ U , ,  211 + xu, ] = K.  

[@,"K, @ " K ]  = 0 m, n 3 0  (4.2) 
[@"K, @"SI = (2m + l )@mt"- 'K (4.3) 

[@"S, @"SI = 2( m - n)@"'+"- lS m, n 3 0 .  (4.4) 

m, n a 0 ,  m + n 5 1 

From corollary 5 we obtain two hierarchies of symmetries for the Kdv equation of 
order p ,  i.e. U, = K , ( p  3 1) 

K ,  =@,U, m a 0  

T: = @"P = @"( t [  K,, f] + t )  = (2p + 1)  tKn+,- I + @' (4) n 2 - 0 .  
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Set T, = @ " f ' ~ P  = @""rP = T { + ~ ,  n 2 - 1 .  Then by corollary 5 we see that {K,,,}:=,, and 
{ T , , } : = ~  constitute a Lie algebra 

[Km, K,,I = 0 (4.5) 

[K,,, ~~1 = ( 2 m  + l)K,,, -), K 1 = 0  (4.6) 

[ T m ,  Tn I = 2( m - n Tm + n (4.7) 

By using (4.2)-(4.4), it is easy to show that (4.6), (4.7) hold for n = -1. Therefore 
{K,}",=o and {T,,}:--, also constitute a Lie algebra whose commutator relations are 
given by (4.5)-(4.7). Here we have obtained 

7 . 2  = 0. 

[KO, T,l]=[Ko,@."*l( i ) ]= K,, n 2 - I  

which makes up the deficiency of Lie algebraic structure of symmetries in Li and Zhu 
(1987). The same deficiency appears in Li and Zhu (1986). 

I n  addition, by corollary 6, we obtain a hierarchy of symmetries for the equation 
U ,  = U, 

7: = 7:(x, I, U )  = IK, + @ R * ' ( i )  n a 0 .  

Here the T:, n 3 1, are all non-local, but T: = tu, + 2u + x u ,  is local. Setting 7, = 72 for 
n 5 0, then the two hierarchies of symmetries {K,,,};]-,) and {T , , } : -~ ,  constitute a Lie 
algebra and also satisfy the relations (4.5)-(4.7). 

4.2. The Juulent-Miodek hierarchy 

Next we consider Jaulent-Miodek hierarchy (Jaulent and Miodek 1977) 

U, = K ,  = @'U, x, I E R p 2 0  (4.8) 

where 

Choose 

Then we obtain 

Lk.@=O Ls@ = i  @[ K ,  SI = [ K ,  @SI = $ K ,  

Similarly we have 

[@"K, @."K] = 0 m , n a O  (4.9) 
[@"K, @"SI = f ( m +  I ) @ " ' - ~ - '  K (4.10) 

Lams, @ " S ] = t ( m  - n ) @ m + n - l S  m, n 3 0. (4.11) 
Thus from corollary 5 we obtain two hierarchies of symmetries for the Jaulent-Miodek 
equation of order p ,  i.e. U, = K ,  (p  2 1) 

m, n S O ,  m + n 5 1 

K,, =@"U, m a 0  

7; = @'"Tp = @ " (  f [  K,, SI+ s )  = $ ( p  + 1 )fKn+,-l + @."s n SO. 
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Let T~ = O " + ' T ~  = T:,,, n 2 -1, then, also by corollary 5, we know that {K,}",o and  
{.rn}:=o constitute a Lie algebra 

[Km, Kn1= 0 (4.12) 

[Km, 7 , 1 = ~ ( m + 1 ) K m + ,  K-, = O  (4.13) 

ET,,  T,] = i ( m  - n ) r m + ,  T-2 = 0. (4.14) 

By (4.9)-(4.11), when n = -1, (4.13) and (4.14) hold. Thus {K,,}:=o and {T,,}:=-~ also 
constitute a Lie algebra whose Lie algebraic structure is still given by (4.12)-(4.14). 

Besides, similarly by corollary 6, we can obtain the following two hierarchies of 
symmetries for the equation U, = U, 

K, =@"U, m a 0  
T , , = T ~ = ~ ~ K , + Q ) " ~ ~ S  n 2 O  

in particular, 

Those two hierarchies of symmetries constitute a Lie algebra whose Lie algebraic 
structure is also given by (4.12)-(4.14). 
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